ESTANDAR
PENSAMIENTO VARIACIONAL Y SISTEMAS ALGEBRAICOS Y ANALITICOS
• Construyo expresiones algebraicas equivalentes a una expresión algebraica dada.
• Identifico relaciones entre propiedades de las gráficas y propiedades de las ecuaciones algebraicas.
COMPONENTE
Numérico variacional
INDICADOR DE DESEMPEÑO
Resuelve inecuaciones
METODOLOGÍA/ SECUENCIA DIDÁCTICA
- Unidad didáctica
- Inecuaciones
- Propósito
Resolver inecuaciones.
- Desarrollo cognitivo instruccional
INECUACIONES:
Una inecuación es una expresión de la forma: f(x) < g(x), f(x) <= g(x), f(x) > g(x) o f(x)>= g(x).
La solución de las inecuaciones es muy parecida a la solución de las ecuaciones.
5x + 6 < 3x – 8
5x - 3x < -8 – 6
2x < -14
x < -7
Todos los valores de x menores que -7 satisfacen la inecuación.
Es muy importante tener en cuenta que si multiplicamos por un numero negativo una inecuación tenemos que cambiar el signo de la desigualdad.
3x > -2
-9x < 6
x < -2/3
Sistemas de inecuaciones de primer grado con una incógnita.
Se resuelven por separado las inecuaciones y se toman como soluciones los intervalos comunes de las soluciones
5x + 6 < 3x – 8
3x > 2
La solución de la primera ecuación es:
5x - 3x < -8 – 6
2x < -14
x < -7
La solución de la segunda ecuación es:
3x > -2
x < -2/3
La solución del sistema sería x < -7.
Inecuaciones de segundo grado.
Se resuelve como una ecuación de segundo grado y se estudian los signos que obtenemos con las soluciones.
x2 - 5x + 6 > 0
Las soluciones de la ecuación x2 - 5x + 6 = 0 son x = 3 y x = 2. Por lo tanto x2 - 5x + 6 = (x - 2)(x - 3).
Tenemos que estudiar los signos cuando x toma valores desde menos infinito hasta 2, desde 2 hasta 3 y desde 3 hasta infinito .
x - 2 es negativo para los valores entre menos infinito y 2.
x - 2 es positivo para los valores entre 2 y 3.
x - 2 es positivo para los valores entre 3 e infinito.
x - 3 es negativo para los valores entre menos infinito y 2.
x - 3 es negativo para los valores entre 2 y 3.
x - 3 es positivo para los valores entre 3 e infinito.
Por lo tanto, multiplicando los signos en los mismos intervalos:
x2 -5x + 6 es positivo para los valores entre menos infinito y 2.
x2 - 5x + 6 es negativo para los valores entre 2 y 3.
x2 - 5x + 6 es positivo para los valores entre 3 e infinito.
Inecuaciones de grado superior a dos
Se descomponen en inecuaciones de grado uno y dos.
Inecuaciones fraccionarias
Son las inecuaciones en las que tenemos la incógnita en el denominador.
Se pasan todos los términos a un lado del signo de desigualdad y se reducen a común denominador.
Después se buscan las soluciones y estudiamos el signo (como en el caso de las ecuaciones de segundo grado). Hay que tener en cuenta que las soluciones que anulan el denominador no valen.
Inecuaciones con valor absoluto
Se resuelven convirtiendo la función valor absoluto en dos inecuaciones
|x - 3| > 3
Con lleva que -3>(x-3)>3, luego
x-3 >3
-3>x-3
son los puntos mayores que 0 y menores que 6.
CAMBIO DE SIGNO EN LAS INECUACIONES.
Tener en cuenta que sólo cambias el signo cuando multiplicas o divides por un número negativo. Si sumas o restas un número negativo, la desigualdad no cambia. Resolver x. Divide ambos lados entre -12 para despejar la variable.
- Desarrollo Metodológico
Evaluación
No hay comentarios:
Publicar un comentario